MCM-BP as a Novel Nanomagnetic Reusable Basic Catalyst for the one Pot Solvent-Free Synthesis of Dihydropyridine, Polyhydroquinoline and Polyhydroacridine Derivatives via Hantzsch Multicomponent Condensation Reaction
Authors
Abstract:
By the immobilization of bipyridinium chloride onto mesoporous MCM-41encapsulated Fe3O4 nanoparticles via a simple post-synthesis method, a totally new organic-inorganic hybrid nanocomposite was formulated. The heterogeneous hybrid nanomagnetic composite was characterized by Fourier Transform InfraRed (FT-IR), X-Ray powder Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Vibrating Sample Magnetometer (VSM) and Thermal Gravimetric Analytical (TGA). The potential applications of this novel nanomagnetic and recyclable basic nanocomposite, Fe3O4@MCM-BP, were also investigated for solvent-free synthesis of 1,4-dihydropyridine, polyhydroquinoline, and polyhydroacridine derivatives via Hantzsch multicomponent condensation reaction. High isolated yields, operational simplicity, clean reaction conditions and minimum pollution of the environment, makes the procedure a useful and appealing process in organic transformation.
similar resources
One –Pot Synthesis of Polyhydroquinoline Derivatives via Hantzsch Condensation Reaction Using Nanosized Magnesium Oxide as Heterogeneous Catalyst
An efficient, recyclable and environmental-friendly synthetic route to polyhdroquinoline derivatives have been developed via multi-component one-pot Hantzsch reaction of various aromatic aldehyde, 2 equivalents of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), ethyl acetoacetate and ammonium acetate using nano magnesium oxide as a catalyst in ethanol under reflux condition. Reaction with 4-chlor...
full textNanocrystalline TiO2 as an efficient and reusable catalyst for the one-pot synthesis of polyhydroquinolien derivatives via Hantzsch reaction
An efficient synthesis of polyhydroquinoline derivatives was reported via four-component coupling reactions of aldehydes, 1,3-dicarbonyl ketones (dimedone or 1,3-cyclohexanedione), ethyl acetoacetate or methyl acetoacetate and ammonium acetate in the presence of a catalytic amount of nanocrystalline TiO2 under solvent free conditions. The reported method is mild, rapid and has the advantages su...
full textNanocrystalline TiO2 as an efficient and reusable catalyst for the one-pot synthesis of polyhydroquinolien derivatives via Hantzsch reaction
An efficient synthesis of polyhydroquinoline derivatives was reported via four-component coupling reactions of aldehydes, 1,3-dicarbonyl ketones (dimedone or 1,3-cyclohexanedione), ethyl acetoacetate or methyl acetoacetate and ammonium acetate in the presence of a catalytic amount of nanocrystalline TiO2 under solvent free conditions. The reported method is mild, rapid and has the advantages su...
full textone –pot synthesis of polyhydroquinoline derivatives via hantzsch condensation reaction using nanosized magnesium oxide as heterogeneous catalyst
full text
Sulfated Titania Nanoparticles: an Efficient Catalyst for the Synthesis of Polyhydroquinoline Derivatives through Hantzsch Multicomponent Reaction
Sulfated titania nanoparticles (SO42-/TiO2 NPs) were synthesized using titanium tetraisopropoxide (TTIP) by the sol-gel method. The structure and morphology of the prepared nanocatalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) methods as well as Fourier transform infrared (FT-IR) and energy dispersive X-ray (EDX) spectr...
full textnanocrystalline tio2 as an efficient and reusable catalyst for the one-pot synthesis of polyhydroquinolien derivatives via hantzsch reaction
an efficient synthesis of polyhydroquinoline derivatives was reported via four-component coupling reactions of aldehydes, 1,3-dicarbonyl ketones (dimedone or 1,3-cyclohexanedione), ethyl acetoacetate or methyl acetoacetate and ammonium acetate in the presence of a catalytic amount of nanocrystalline tio2 under solvent free conditions. the reported method is mild, rapid and has the advantages su...
full textMy Resources
Journal title
volume 39 issue 3
pages 35- 48
publication date 2020-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023